# 前言

TCP/IP 协议 是网络通信的基石,TCP/IP 协议 不是只有 TCPIP 协议,它是整个网络通信中所有协议的简称。

维基百科:TCP/IP 协议簇

维基百科:OSI 模型 (opens new window)

# TCP/IP 参考模型维基百科
https://zh.wikipedia.org/wiki/TCP/IP%E5%8D%8F%E8%AE%AE%E6%97%8F
# OIS 参考模型维基百科
https://zh.wikipedia.org/wiki/OSI%E6%A8%A1%E5%9E%8B
image-20200801104517510

图片来自 《图解 TCP/IP 与 OSI 参考模型》 中 TCP/IP 协议分层模型

OSI 参考模型 (七层)是个理论模型,实际我们用的是 TCP/IP (四层)模型。不过我们可以通过 OSI 参考模型 来学习 TCP/IP 模型。

应用层:应用程序通信细节的协议,比如常用的 HTTP

传输层:主要是负责两个节点之间数据传输,通信标识是 port 端口号。

网络层:地址管理和路由选择,在两点之间找到一条最佳的通信路线,通信标识是 IP

数据链路层:负责物理层面链接的通信(同一个网段内)。也就是局域网中通过交换机链接的节点。通信标识是 Mac 地址,网卡出厂自带的标识。

物理层:将链路层的数据帧(字节流)转换为电压或光信号传播。

网络通信可以做什么呢?

redisson (一个操作 redis 的 java 库),就是使用的 netty 来做网络通信连接 redis 服务的。

微服务中的服务发现和通信,就需要你熟悉网络通信。

你要是在通信行业,那就不是了解了,你连协议的规范都得很清楚,不然路由器你都整不出来,还说什么 5G

作为一个 Java 后端开发,主要是开发偏应用层面的程序,离底层相对比较远,熟练掌握即可,如果以后做通信行业的时候,你也一定会进一步学习的相关细节的。

TCP/IP 你不了解,也不会有多大问题,CRUD 还是没有问题的。但是你了解了之后,日常开发定位和解决问题方面有很大助力,总之学习 TCP/IP 是一个重要不紧急的事情,根据自己目标和层次安排。

# 本文内容

  • 局域网中各节点怎么通信
  • 介绍 IP,ICMP,ARP 协议在网络层的作用及路由表的作用,及网段划分,子网掩码、网关的作用
  • 介绍交换机和路由器的作用
  • 介绍 TCP/IP 三次握手和四次挥手,TCP 中通信状态的作用,滑动窗口
  • 介绍 tcp 包格式,ip 包格式,链路层 数据格式

# 交换机与路由器

# 交换机

维基百科:交换机

交换机上有多个端口(不是 port)供计算机连接,交换机会维护端口与连接这个端口的 PC 的 Mac 地址映射表。当交换机接受到数据的时候,会根据目的 Mac 地址,发送到对应的端口上,然后经过网线发送到目的 PC。

交换机链接多个电脑组成一个局域网,交换机链接交换机又可以组成一个更大的局域网。

比如 A、B 交换机各有 100 个端口,A 链接了 99 个 PC,然后 B 交换机链接 99 个,再将其中的一个端口 A/B 之间相互连接组成一个更大的局域网。

# 路由器

维基百科:路由器

路由器工作在网络层,主要用于将一个网段数据包转发到另一个网段内。路由器上也会有个几个 LAN 口 (Local Area Network,局域网),用于建立局域网。还会有一个 WAN(Wide Area Network,广域网),连接运营商的网络。

路由器也具有交换机的功能,只是 LAN 口 比较少,可以接入的电脑比较少。

PC 或者 手机 连接无线路由器时也会给 PC 分配一个局域网 IP,子网掩码,网关等。

我住的地方的网络拓扑图如下:未命名文件

当手机与电脑通信的时候,实际通过 LAN 口走局域网通信。

当手机访问 维基百科 时,实际是通过路由器跳入到光猫网段,再通过光猫跳入到小区运营商的网络,… 到维基百科的服务器上。

只要需要有 IP 地址的设备(光猫,路由器,PC,手机)都需要有网卡,网卡出厂自带有 Mac 地址。IP 和 Mac 地址的作用后文中会介绍。

image-20200801144243065

# 交互机和路由器的区别

这部分内容是我自己的理解,我没有在网上找到资料佐证,请谨慎对待

其实交换机和路由器硬件差别不大,只是硬件上的软件决定了它能做什么。

2 层交换机上的软件(只有数据链路层)可能只做解析帧,拿到 mac 地址,然后查找当前交换机的端口对应的 mac 地址,然后从对应的端口传递过去。

路由器(有网络层和数据链路层),当拿到数据包的时候,发现目的 mac 地址不是自己,就会将数据包通过 LAN 口发送出去。

当发送的数据包的 目的 MAC 地址 是当前路由器上 MAC地址 ,路由器就会对其解包,拿到数据包 目的 IP ,然后根据 目的 IP 匹配下一跳 mac 地址,封包为新的帧数据发送出去。

# TCP/IP 通信

TCP_IP 同一以太网 (2)

从发送端发送数据的时候,数据经过每层的封包,经物理层传送到接收端。接收端收到数据包,一层一层进行拆包,然后将数据数据发送给我接收端的应用层的应用程序。

通常我们说的第一层就是 物理层 ,第二层是 链路层 …...

# 数据链路层

image-20200801220255714

源 MAC 地址 就是发送端的 MAC 地址,目标 MAC 地址不是最终的 MAC 地址,是下一跳节点的 MAC 地址。

类型 指的是这个以太网帧中的 数据 是何种类型的数据,比如 IPV4,IPV6。然后调用对应的接口进行处理。

数据链路层传输的帧是有大小限制的(64-1518 字节),能传输的数据的最大值就是 最大传输单元,简称 MTUMaximum Transmission Unit。这个值在以太网中通常是 1500。

# 查看网卡对应的 MTU
ifconfig -a
netstat -i

# 网络层

网络层主要以 IP 协议为主,也有 ICMP,ARP(在 TCP\IP 模型 中,arp 属于网络层。在 osi 七层模型arp 数据链路层。)。

# DNS

IP 是网络层通信的标识。但是 IP 不容易记忆,所以出现了 域名

访问 DNS 可以将域名解析为 IP

可以在本地配置 host ,定义域名和 IP 对应关系,这样就不用解析了。

也可以在电脑配置 DNS 解析时访问的 ip,这样域名解析时就会访问这个服务。

image-20200801182357581
# 解析域名的 ip
dig www.mflyyou.cn

# IP 基础

IP 地址 又可以分为 IPV4IPV6,目前使用比较广的是 IPV4 ,所以只介绍 IPV4

IP 地址 由 32 (2 进制)位组成,32 位被 . 分为了四组。每组 8 位,十进制表示就是 xxx.xxx.xxx.xxx(xxx 取值在 0-255)。

IP 地址网络地址 (网段) 和 主机号

同一个网段的电脑用 2 层交互机相连,然后就可以局域网通信了。

同一个网段内,主机号不能重复,重复主机号的电脑不能上网。

为了便于区分出 IP 在那个网段,引入了子网掩码 (netmask)。IP 地址与子网掩码按位与计算可以得出网段,32 位 中取出网段所在的位,剩余就是主机号能取得值。

IP 中主机号全为 0 就是网段,全为 1 就是广播地址。这两个是不能被分配给电脑的。

IP:192.168.202.116

子网掩码:255.255.252.0

网段为:192.168.200.0

广播地址为:192.168.203.255

IP:192.168.201.56

子网掩码:255.255.252.0

网段为:192.168.200.0

广播地址为:192.168.203.255

# ICMP

网络层是不可靠传输,发送失败的数据包,网络层是不会再发一次数据包,但是会有 ICMP 包回复告诉你发包到底是什么问题。传输层 可以根据 ICMP 来判断是否需要重发包。

# ARP

ARP 用于 IP 的 对应的 MAC 地址。

目的 IP 在路由表中查询下一跳的 IP,在查询这个 IP 对应的 mac 地址

查询的这个 IP 是当前网段内的 ip,它会通过广播地址发送给当前网段内所有主机,收到这个协议的主机会判断是否是当前主机,是的话就会恢复当前 ip 对应的 MAC 地址。

image-20200801223925086

# 通信过程分析

未命名文件

当我在浏览器输入 wwww.mflyyou.cn 的时候:

1、先解析域名(DNS) www.mflyyou.cnIP (目的 IP: 47.104.168.20)

2、将目的 IP 与本地路由表中的子网掩码进行按位与,计算出网段与 Destination 匹配,看哪个匹配度更高,走哪个条目。都没有匹配到走默认条目(0.0.0.0)

# 查看路由表
route -n
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
0.0.0.0         192.168.31.1    0.0.0.0         UG    100    0        0 eth0

3、然后用 arp 查询(有缓存可不查,走缓存)192.168.31.1 对应的 mac 地址

4、数据链路层封装以太网帧数据包中的目的 MAC 地址址就是 192.168.31.1 对应的 mac 地址,然后将数据帧发送到下一个节点(这也就常说的下一跳,数据包发送只是找到当前接节点的下一个节点)

5、到下一个路由器节点,路由器解包,看是发给自己的数据包(根据帧中的目的 MAC 地址与自己的 MAC 地址比较),不是就丢弃了;是的话就会解包拿到 目的 IP (47.104.168.20),然后在当前路由器上根据路由表查询下一跳,发送给下一个节点;。。。。 直到目的服务器,或者发送的包 TTL 为 0

6、发到目的服务器的网卡上,网卡将数据复制到内核缓冲区,应用程序从缓冲区中读取数据

# IP 数据格式

IPv4 数据结构

image-20200802000153692

图来自《图解 TCP/IP》

  • 版本(Version):4 bit 构成,代表当前 IP 包是哪个版本,IPv4 或者 IPv6,为 4 时表示当前是 IPv4。

  • 首部长度(Internet Header Length):由 4 bit 构成,一般 20 字节大小。

  • 标识(Identification):用于分片重组用,值相同的属于同一个 IP 数据包

  • 标志(Flags):用于判断是否还有分片。

  • 总长度(Total Length):16 个字节,IP 数据包总的长度,最长可为 65525 字节。

  • 分段偏移(Fragment Offset):表示这个包在原来 IP 包中的位置。

  • 生存时间 TTL(Time To Live): IP 包在路由转发中存活的时间,被路由转发一次,次数减 1,为 0 时,数据包被丢弃。

  • 挂载协议标识 (Protocol):记录数据包中 Data(实际发送的数据)是什么类型的数据,1 标识 ICMP, 4 标识 IP, 6 标识 TCP, 17 标识 UDP。根据这个挂载协议程序就知道调用哪些接口来进行后续的处理了。

数据链路层中 以太网数据帧MTU 是 1500 字节,限定了 IP 数据包最大为 1500 字节。然后去掉 IP 包首部 20 字节,一般 IP 数据包发送的数据为 1480 字节。

当我们发送一个 3058 字节的 IP 数据包时,这显然大于了数据链路层的 MTU (1500 字节)。所以网络层会对大于链路层 MTU 的数据包进行分片。拆分一个一个的 1500 的数据包发送接收端,接收端接收到这三个包,在汇聚成一个完成的,在调用传输层接口。

# 会发送 3050 字节数据与 8 字节的 ICMP 首部,这个命令会总共发送 ip 数据大小 3058 字节。
ping -s 3050 www.mflyyou.cn

image-20200801230015436

image-20200801230141070 image-20200801230528418 image-20200801230423653

通过 wireshark 抓包可以看到,IP 数据包的首部长度占了 20 字节,实际每次发送数据为 1480 字节,最后一次发送了 98 字节。

从 Fragment 和 Identification 可以看到这三个包属于同一个 IP 数据包,并且从 Fragment offset 能将这三个包合成一个完成的网络层数据包。

# 传输层 TCP

TCP 是面向链接的,可靠的,全双工协议。

面向连接就是发送之前,需要建立一个链接通道,数据都是在这个链接中发送。

网络层 是不可靠协议,数据发送失败是不会重发的。

TCP 协议中发送端会记录发送的那些数据包被客户端收到了。接收端接受数据之后,会回复一个 ACK 包(由数据格式中的控制位决定),确认应答号告诉发送端哪些数据包接收到了。

发送端 发送了数据包之后,这个包会有一个重发倒计时,在这个倒计时内没有收到接收端 回复 ACK 包,就会再重发一个数据包。如果是 HTTP 请求 ,就相当于同样的数据请求了两次。

我们知道支付接口都要求幂等性,有一部分原因是因为这个超时重发。发送端发送了请求,接收端处理好业务之后回复的 ACK 包超时,发送端超时重发这个请求。如果不保证接口的幂等性,那么扣钱就会扣两次。

我们要做的就是保证这个重发 n+1 次不再扣用户的钱,一般会用一个 token 来判断是不是重复请求,重复就不走扣款处理了,直接返回已经支付,保证接口的幂等性。或者用一个账单流水来保证幂等性。

连接既然需要建立,那么也会有连接断开。断开连接需双方协商好之后断开连接,不能单方面关闭而不管对方。因为建立连接之后占用的计算机资源需要释放掉。你单方面强制断开连接释放了资源,但是对方不知道需要断开连接,分配的计算机资源一直占用那就是不可靠协议了。所以 TCP 有四次挥手断开连接。

全双工就是连接两边都可以主动发送接受数据,而不是轮训访问有没有数据到达。

# TCP 数据格式

首先我们要先了解 TCP 数据格式,才能更容易知道 TCP 的工作原理。

image-20200802000246545

# 源端口号(Source Port)

占用 2 个字节。标识 发送端 程序的端口号,当接收端需要回复消息的时候,需要带上这个端口号。

# 目的端口号(Destination Port)

占用 2 个字节。标识 接收端 程序的端口号,可以传递给监听在这个端口的程序

# 控制位(Control Flag)

占用 6 位,不满一个字节。标识当前 TCP 包是什么包,在通信过程中有一些特殊作用。

# SYN

表示希望建立三次握手链接,并初始化序列号。

# ACK

对收到数据包的应答确认。接收端接受数据之后,会回复 ACK 包,发送端从其上 确认应答号 知道接收端哪些数据已经接受了。

# FIN

表示没有数据发送了,希望断开连接

# PASH

接收端接收到这个数据包需要立刻传递给应用层,不能等待接收更多的数据包

# RET

链接出现异常,需要强制断开连接

# URG

表示包中有需要紧急处理的数据

# 序列号(Sequence Number)

占用 4 个字节。TCP 三次握手的时候,发送端和接收端各自初始化(随机的)自己的 `序列号。

我们可以这样理解,发送端发送的数据就是一个字节数组,这个数组中每个字节都有一个 序列号

发送端和接收端都有自己的序列号,并且不相同,在三次握手的时候自己初始化,然后告知对方。

# 确认应答号(Acknowledgement Number)

占用 4 个字节。确认应答号 也是指的序列号,指的是期望发送端下次发送的序列号,这个序列号(确认应答号)之前的数据已经接受处理了。

下图是我抓包建立三次链接,然后我发送三次 1\n 数据。

三次握手,发送端通过发送 SYN 包,发送自己的初始化序列号(893189542),然后发送的每个字节都会有一个序列号。

接收端发送 ACK 包中的 确认应答号,指明这个序列号之前的数据我已经接受了。

image-20200802205000890

# 窗口大小(Window Size)

窗口大小适用于流控的。发送端不能一直发送消息,需要根据我的接受能力来调整发包的速率。

未命名文件

内核会为每个 TCP/IP 分配读写缓冲区,网卡会从这些读写缓冲区中把数据取走,然后发送。数据大致可以分为这几类。

TCP/IP 是可靠连接,所以它需要记录哪些数据发送已被对方接受了(由确认应答号可以知道),接受的数据会被淘汰掉,节省内存空间。

窗口大小作用:接收端会通过 ACK 告诉 发送端 调整窗口大小。

当窗口中的数据全都是 已发送未确认数据 时,发送端不能再发送新的数据,必须等待窗口空出位置来。

未命名文件 (2)

当有一个数据包被确认了,发送端就可以发送新的数据包。已发送未确认数据 会在超时的时候重新发包。

滑动窗口百度百科

# 校验和 (Checksum)

占用 2 个字节。校验和 用于校验数据包是否损坏。每个数据包都一个 校验和接收端 接收到数据之后,使用相同的算法对数据计算出一个值,然后和 校验和比较,不一样说明数据在传输过程中损坏了,接收端 会丢弃这个包,等待 发送端 重新发这个包。

# TCP 中 MSS

链路层能发送的最大以太网帧为 1500 字节,MTU 为 1500。

IP 数据包能发送的最大数据 = MTU - IP 首部大小(一般 20 字节),IP 数据包超过这个 1500 字节会分片

TCP 传输数据以段 (Segment) 为单位。

TCP 为了避免分片,会主动将数据分片之后交给网络层。 TCP 能传输的最大分段(只是数据不包括首部)称之为 Max Segment Size,简称为 MSS。

MSS = MTU - IP 首部大小 - TCP 首部大小

在以太网中 TCP 的 MSS = 1500(MTU) - 20(一般 IP 首部大小) - 20(一般 TCP 首部大小)= 1460,这个值需要根据首部计算

image-20200802211639395

MSS 值在三次握手时,会通过 MTU 计算的。

# TCP 三次握手建立连接

image-20200802212532628

图片来自 码出高效:Java 开发手册

为什么是三次握手建立连接呢?很多面试官也会问。这其实是可靠连接的最少握手次数。

image-20200802212808724

图片来自 码出高效:Java 开发手册

这里还有个 全连接队列和半链接队列 (opens new window) 的知识点

# TCP 四次挥手断开连接

image-20200802213247725

图片来自 码出高效:Java 开发手册

CLOSE_WAIT 是收到对方 FIN 包之后,回复 ACK 之后进入的状态。之后不会接受数据了,进行已收数据的业务处理之后,在发送一个 ACK+FIN,进入 LASK_ACK,然后等待对方发送 ACK,超时没有等到,会重试发送(内核可以配置重试发送次数)。当你发现服务端有大量的 CLOSE_WAIT 链接,服务端的代码有问题,需要排查。

TIME_WAIT 的链接多的话,服务端可以优化,不然这个链接会占用很长时间,在高并发的时候,会导致没有资源释放的慢。

MSL 为 Maximum Segment Lifetime,在 centos 中默认值为 60s

# sysctl -a | grep tcp_fin_timeout
# 推荐小于 30,也不能太小,15-30
net.ipv4.tcp_fin_timeout = 60

说明 A 机器链接会在 120 s 之后才能释放。这个是为了保证 B 机器 能接收到最后一个 ACK,当处于 LAST_ACK 的超时没有收到 A 发来的 ACK 的话,会重试发送一个 FIN+ACK。这个 2MSL 也是为了最大限度保证 B 机器正常关闭。

三次握手建立连接四次挥手断开连接 需要结合抓包工具自己分析一下,理解会更深刻。

# 网络抓包

Wireshark 抓包分析是很厉害的,mac oslinux 都有命令行程序 tshark,可以在服务器用 tshark 抓包,拿到本地来分析。

抓包的时候一定要指定抓什么包,什么包都抓的话,一会你的电脑内存就飙升好多(别问我为啥知道,问就是 30g 内存都让它吃了)。

Wireshark 有个 抓包过滤器显示过滤器。抓包的时候指定抓什么包这是 抓包过滤器的作用,抓包之后显示显示那些内容那是 显示过滤器的作用

# -i 指定那个网卡
# -f 指定抓包过滤器
# -Y 显示过滤器
# -w 指定抓包数据到文件,没有 -w 输出屏幕
# -V 显示 TCP/IP 每层包的详细信息,建议将抓包的文件在图形化界面中查看,不指定 -V
tshark  -i en0 -f "tcp" -Y "http"

# 抓取访问 www.mflyyou.cn 的包
tshark  -i en0 -w a.pcap -f "host www.mflyyou.cn"

# 指定抓那个协议 tcp,ip,icmp,arp,udp
tshark  -i en0 -f "tcp"


# host 指定域名或者 ip
# port 指定端口
# 访问 www.mflyyou.cn 的包,或者 icmp. ping www.baidu.com 也会被抓到
tshark  -i en0 -f "host www.mflyyou.cn || icmp"
tshark  -i en0 -f "port 80"

# 条件之间支持逻辑运算符 || && !
# 抓取 ssh 链接的包
tshark  -i en0 -f "host www.mflyyou.cn && port 22"

# 参考资料

《图解 TCP/IP》

linux-tcp 说明 (opens new window)

鸟哥私房菜:基础网络的概念 (opens new window)